PRD: Monitoring & Analytics
Generated: 2025-07-23 00:00 UTC
Status: Complete
Verified:
Executive Summary
This PRD defines the monitoring, analytics, and observability requirements for the Document Conversion Service. It establishes comprehensive systems for tracking service health, user behavior, business metrics, and operational insights to ensure reliable service delivery, data-driven decision making, and proactive issue resolution.
Key Objectives
- Implement real-time monitoring for service health and performance
- Build comprehensive analytics for business intelligence
- Create actionable alerting systems for incident response
- Provide customer-facing status and transparency
- Enable data-driven product development and optimization
User Stories
As a DevOps Engineer
- I want real-time visibility into system health
- I want alerts before users notice issues
- I want detailed logs for troubleshooting
- I want automated incident response
As a Product Manager
- I want to understand user behavior patterns
- I want conversion success metrics by format
- I want feature adoption tracking
- I want revenue analytics
As a Customer Success Manager
- I want to monitor customer health scores
- I want usage trends per customer
- I want to identify at-risk accounts
- I want success metrics for renewals
As an Executive
- I want business KPI via API
- I want growth trend analysis
- I want competitive benchmarking
- I want predictive analytics
Functional Requirements
System Monitoring
1. Infrastructure Monitoring
graph TB
subgraph Metrics Collection
A[Application Metrics] --> E[Prometheus]
B[System Metrics] --> E
C[Custom Metrics] --> E
D[Cloud Metrics] --> E
end
subgraph Visualization
E --> F[Grafana]
E --> G[Custom Analytics API]
end
subgraph Alerting
E --> H[Alert Manager]
H --> I[PagerDuty]
H --> J[Slack]
H --> K[Email]
end
Key Metrics:
- CPU utilization per service
- Memory usage and garbage collection
- Network throughput and latency
- Disk I/O and storage usage
- Container health and restarts
2. Application Performance Monitoring (APM)
metrics:
api_endpoints:
- name: conversion_latency
type: histogram
labels: [endpoint, format, status]
buckets: [0.1, 0.5, 1, 2, 5, 10, 30]
- name: conversion_rate
type: counter
labels: [format_from, format_to, status]
- name: file_size_processed
type: histogram
labels: [format]
buckets: [1KB, 100KB, 1MB, 10MB, 50MB, 100MB]
- name: queue_depth
type: gauge
labels: [queue_name, priority]
Performance Tracking:
- Request rate (RPS) per endpoint
- Response time percentiles (p50, p95, p99)
- Error rates by error type
- Throughput in MB/s
- Concurrent request handling
3. Service Level Monitoring
SLI Definitions:
{
"slis": {
"availability": {
"target": 99.9,
"measurement": "successful_requests / total_requests"
},
"latency": {
"target": {
"p50": 1000,
"p99": 5000
},
"measurement": "response_time_ms"
},
"error_rate": {
"target": 0.1,
"measurement": "(errors / total_requests) * 100"
}
}
}
Error Budget Tracking:
- Monthly error budget: 43.2 minutes
- Real-time budget consumption
- Burn rate alerts
- Historical trend analysis
Business Analytics
1. Conversion Analytics
-- Daily conversion metrics
SELECT
DATE(created_at) as date,
source_format,
target_format,
COUNT(*) as total_conversions,
AVG(file_size_bytes) as avg_file_size,
AVG(processing_time_ms) as avg_processing_time,
SUM(CASE WHEN status = 'success' THEN 1 ELSE 0 END) / COUNT(*) as success_rate
FROM conversions
GROUP BY DATE(created_at), source_format, target_format;
Tracked Metrics:
- Conversions by format pair
- File size distribution
- Processing time by format
- Geographic distribution
- Time-of-day patterns
2. User Behavior Analytics
graph LR
A[User Events] --> B[Event Stream]
B --> C[Real-time Processing]
B --> D[Batch Processing]
C --> E[Live Dashboards]
C --> F[Alerts]
D --> G[Data Warehouse]
G --> H[BI Tools]
G --> I[ML Models]
User Metrics:
- API calls per user
- Feature adoption rates
- User retention curves
- Conversion patterns
- Error frequency
3. Revenue Analytics
Financial Tracking:
revenue_metrics:
- metric: monthly_recurring_revenue
calculation: sum(subscription_amount)
dimensions: [plan_type, region]
- metric: average_revenue_per_user
calculation: total_revenue / active_users
dimensions: [cohort, plan_type]
- metric: customer_lifetime_value
calculation: arpu * avg_customer_lifespan
dimensions: [acquisition_channel, industry]
- metric: churn_rate
calculation: churned_customers / total_customers
dimensions: [reason, plan_type, tenure]
Observability Platform
1. Distributed Tracing
{
"trace": {
"trace_id": "abc123def456",
"spans": [
{
"span_id": "span1",
"operation": "http_request",
"duration_ms": 245,
"tags": {
"http.method": "POST",
"http.url": "/api/v1/convert",
"user.id": "user123"
}
},
{
"span_id": "span2",
"parent_id": "span1",
"operation": "file_validation",
"duration_ms": 32
},
{
"span_id": "span3",
"parent_id": "span1",
"operation": "conversion",
"duration_ms": 189,
"tags": {
"format.from": "xlsx",
"format.to": "json",
"file.size": 1048576
}
}
]
}
}
2. Centralized Logging
Log Structure:
{
"timestamp": "2025-07-23T10:15:30.123Z",
"level": "INFO",
"service": "xlsx-converter",
"trace_id": "abc123def456",
"user_id": "user123",
"message": "Conversion completed successfully",
"context": {
"file_size": 1048576,
"processing_time_ms": 189,
"sheets_processed": 3,
"output_size": 524288
}
}
Log Aggregation:
- ElasticSearch for storage
- Logstash for processing
- Kibana for visualization
- Retention: 30 days hot, 1 year cold
3. Custom Metrics
# Custom metric collection
from prometheus_client import Counter, Histogram, Gauge
conversion_counter = Counter(
'document_conversions_total',
'Total number of document conversions',
['source_format', 'target_format', 'status']
)
processing_time = Histogram(
'conversion_processing_seconds',
'Time spent processing conversions',
['format'],
buckets=[0.1, 0.5, 1.0, 2.5, 5.0, 10.0]
)
active_conversions = Gauge(
'active_conversions',
'Number of conversions currently processing'
)
Alerting System
1. Alert Configuration
alerts:
- name: HighErrorRate
expr: |
rate(http_requests_total{status=~"5.."}[5m]) > 0.05
for: 5m
severity: critical
annotations:
summary: "High error rate detected"
description: "Error rate is {{ $value }} (threshold: 0.05)"
- name: LowConversionSuccess
expr: |
rate(conversions_total{status="success"}[15m]) < 0.95
for: 10m
severity: warning
annotations:
summary: "Conversion success rate below threshold"
- name: HighMemoryUsage
expr: |
container_memory_usage_bytes / container_spec_memory_limit_bytes > 0.9
for: 5m
severity: warning
2. Alert Routing
graph TD
A[Alert Triggered] --> B{Severity}
B -->|Critical| C[Page On-Call]
B -->|High| D[Slack #incidents]
B -->|Medium| E[Email Team]
B -->|Low| F[Dashboard Only]
C --> G[Incident Response]
D --> G
G --> H[Post-Mortem]
3. Incident Management
Runbook Template:
## Alert: High Error Rate
### Symptoms
- API error rate > 5%
- Customer complaints
- Increased support tickets
### Diagnosis Steps
1. Check Grafana dashboard
2. Review error logs in Kibana
3. Check recent deployments
4. Verify external dependencies
### Mitigation
1. Enable circuit breaker
2. Scale up instances
3. Roll back if deployment-related
4. Engage escalation team if needed
### Resolution
- Fix root cause
- Deploy patch
- Verify metrics return to normal
- Update runbook if needed
Customer-Facing Analytics
1. Usage API Response Structure
interface UsageAPIResponse {
summary: {
totalConversions: number;
successRate: number;
creditsRemaining: number;
currentPlan: string;
};
charts: {
dailyUsage: TimeSeriesData[];
formatDistribution: PieChartData[];
successRatetrend: LineChartData[];
creditConsumption: AreaChartData[];
};
details: {
recentConversions: Conversion[];
topFormats: FormatPair[];
averageFileSize: number;
peakUsageTime: string;
};
}
2. API Analytics
Endpoint Metrics:
- Requests per endpoint
- Average response time
- Error distribution
- Rate limit usage
- Geographic origin
3. Status Page
components:
- name: API
status: operational
uptime_90d: 99.95%
response_time: 142ms
- name: Conversion Service
status: operational
uptime_90d: 99.92%
queue_depth: 23
- name: File Storage
status: operational
uptime_90d: 100%
incidents:
- title: "Elevated API Latency"
status: resolved
duration: 15m
impact: minor
postmortem_url: "/incidents/2024-07-15"
Data Pipeline
1. Real-time Analytics
graph LR
A[API Events] --> B[Kafka]
B --> C[Stream Processing]
C --> D[Real-time DB]
D --> E[Live Dashboards]
B --> F[Data Lake]
F --> G[Batch Processing]
G --> H[Data Warehouse]
H --> I[BI Tools]
2. Data Warehouse Schema
-- Fact table
CREATE TABLE fact_conversions (
conversion_id UUID PRIMARY KEY,
user_id UUID,
timestamp TIMESTAMP,
source_format VARCHAR(10),
target_format VARCHAR(10),
file_size_bytes BIGINT,
processing_time_ms INTEGER,
status VARCHAR(20),
error_code VARCHAR(50),
api_version VARCHAR(10),
sdk_version VARCHAR(20),
ip_country VARCHAR(2)
);
-- Dimension tables
CREATE TABLE dim_users (
user_id UUID PRIMARY KEY,
account_type VARCHAR(20),
created_date DATE,
industry VARCHAR(50),
company_size VARCHAR(20)
);
Non-Functional Requirements
Performance Requirements
- Metric ingestion: 1M points/second
- Query response: < 2 seconds
- Dashboard load: < 3 seconds
- Alert evaluation: < 30 seconds
Retention Requirements
- Real-time metrics: 7 days
- Aggregated metrics: 2 years
- Raw logs: 30 days
- Compressed logs: 1 year
- Traces: 7 days
Reliability Requirements
- Monitoring uptime: 99.99%
- No data loss for metrics
- Alert delivery: 99.9%
- Dashboard availability: 99.9%
Technical Specifications
Monitoring Stack
1. Metrics Collection
# Prometheus configuration
global:
scrape_interval: 15s
evaluation_interval: 15s
scrape_configs:
- job_name: 'api-servers'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
2. Visualization
{
"dashboard": {
"title": "Conversion Service Overview",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "rate(http_requests_total[5m])"
}
]
},
{
"title": "Error Rate",
"type": "stat",
"targets": [
{
"expr": "rate(http_requests_total{status=~'5..'}[5m])"
}
]
}
]
}
}
Analytics Infrastructure
1. Event Streaming
# Event producer
from confluent_kafka import Producer
producer = Producer({
'bootstrap.servers': 'kafka:9092',
'compression.type': 'snappy'
})
def track_conversion(event_data):
producer.produce(
'conversion-events',
key=event_data['user_id'],
value=json.dumps(event_data)
)
2. Data Processing
-- Streaming SQL for real-time aggregation
CREATE STREAM conversion_stats AS
SELECT
TUMBLE_START(rowtime, INTERVAL '1' MINUTE) as window_start,
source_format,
target_format,
COUNT(*) as conversion_count,
AVG(processing_time_ms) as avg_processing_time,
MAX(file_size_bytes) as max_file_size
FROM conversion_events
GROUP BY
TUMBLE(rowtime, INTERVAL '1' MINUTE),
source_format,
target_format;
Success Metrics
Monitoring Effectiveness
- Mean time to detection < 2 minutes
- False positive rate < 5%
- Alert acknowledgment < 5 minutes
- Incident resolution < 1 hour
Analytics Value
- Dashboard adoption > 80%
- Data-driven decisions > 10/month
- Predictive accuracy > 85%
- ROI from insights > $100K/year
Operational Excellence
- Runbook coverage > 95%
- Automated remediation > 50%
- Post-mortem completion > 95%
- SLO achievement > 99%
Dependencies
External Services
- Monitoring platforms
- Time-series databases
- Log aggregation services
- Analytics warehouses
Internal Systems
- API services
- Event streaming
- Data pipelines
- Authentication
Timeline & Milestones
Phase 1: Core Monitoring (Month 1)
- Basic metrics collection
- Essential dashboards
- Critical alerts
- Status page
Phase 2: Advanced Analytics (Month 2)
- User behavior tracking
- Business dashboards
- Predictive models
- A/B testing
Phase 3: Automation (Month 3)
- Auto-remediation
- Anomaly detection
- Capacity planning
- Cost optimization
Phase 4: Intelligence (Month 4)
- ML-powered insights
- Predictive alerts
- Customer health scores
- Revenue optimization
Risk Mitigation
Monitoring Risks
- Data loss: Multiple collection points
- Alert fatigue: Smart deduplication
- Blind spots: Comprehensive coverage
Analytics Risks
- Data privacy: Anonymization
- Incorrect insights: Data validation
- Performance impact: Sampling strategies
Future Considerations
Advanced Capabilities
- AI-powered root cause analysis
- Predictive failure detection
- Automated capacity planning
- Real-time cost optimization
Platform Evolution
- Edge monitoring
- IoT integration
- Blockchain audit trails
- Quantum-safe metrics